Engineering tissues with a perfusable vessel-like network using endothelialized alginate hydrogel fiber and spheroid-enclosing microcapsules

نویسندگان

  • Yang Liu
  • Shinji Sakai
  • Masahito Taya
چکیده

Development of the technique for constructing an internal perfusable vascular network is a challenging issue in fabrication of dense three-dimensional tissues in vitro. Here, we report a method for realizing it. We assembled small tissue (about 200 μm in diameter)-enclosing hydrogel microcapsules and a single hydrogel fiber, both covered with human vascular endothelial cells in a collagen gel. The microcapsules and fiber were made from alginate and gelatin derivatives, and had cell adhesive surfaces. The endothelial cells on the hydrogel constructs sprouted and spontaneously formed a network connecting the hydrogel constructs with each other in the collagen gel. Perfusable vascular network-like structure formation after degrading the alginate-based hydrogel constructs by alginate lyase was confirmed by introducing solution containing tracer particles of about 3 μm in diameter into the lumen templated by the alginate hydrogel fiber. The introduced solution flowed into the spontaneously formed capillary branches and passed around the individual spherical tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Vascular Tissues via Multilayer Cell Deposition inside Hydrogel Microchannels

This paper reports a new approach for constructing blood vessel-like tissues using microfluidic devices made of calcium-containing agarose hydrogel. Sodium alginate (NaA) solutions with different cell types at high densities were introduced stepwise into the hydrogel microchannel, to deposit cell-containing multiple Ca-alginate hydrogel layers on the channel surface with the help of Ca 2+ ions ...

متن کامل

Multi-casting approach for vascular networks in cellularized hydrogels

Vascularization is essential for living tissue and remains a major challenge in the field of tissue engineering. A lack of a perfusable channel network within a large and densely populated tissue engineered construct leads to necrotic core formation, preventing fabrication of functional tissues and organs. We report a new method for producing a hierarchical, three-dimensional (3D) and perfusabl...

متن کامل

A Glycosaminoglycan Based, Modular Tissue Scaffold System for Rapid Assembly of Perfusable, High Cell Density, Engineered Tissues

The limited ability to vascularize and perfuse thick, cell-laden tissue constructs has hindered efforts to engineer complex tissues and organs, including liver, heart and kidney. The emerging field of modular tissue engineering aims to address this limitation by fabricating constructs from the bottom up, with the objective of recreating native tissue architecture and promoting extensive vascula...

متن کامل

Lipid Screening in Single Microalgae Using Hydrogel Microcapsule Arrays

We demonstrated a microwell array-based microfluidic system, allowing in situ analysis of the lipid content of individual microalgal cells in alginate hydrogel microcapsules. Alginate hydrogel microcapsules with a mean diameter of 26 μm, which encapsulate a single microalga stained with nondestructive lipophilic green fluorescent dye, BODIPY 505/515, were successfully docked inside the microwel...

متن کامل

SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures.

A major challenge in tissue engineering is to reproduce the native 3D microvascular architecture fundamental for in vivo functions. Current approaches still lack a network of perfusable vessels with native 3D structural organization. Here we present a new method combining self-assembled monolayer (SAM)-based cell transfer and gelatin methacrylate hydrogel photopatterning techniques for microeng...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016